Oklahoma's number one blog for natural and cultural history.

 

Inside the Treasure Box: Week Eleven

We’ve planned a “larger then life” finale for our ITTB series today. You could even say it is a story of Jurassic proportions. There’s a good chance that you’ve seen the object of today’s post if you’ve visited the museum, but before we reveal the paleontology department’s most prized specimen, here is a little backstory:

image

The Sauroposeidon

In 1994, vertebrate paleontology curator Richard Cifelli and his team found four vertebrae of one Sauroposeidon in southeastern Oklahoma. Sauroposeidon fossils are common in Oklahoma, many of which come from a quarry located in Atoka.

image

Each vertebra of the Sauroposeidon measured four feet or more in length. The bones were so enormous that Cifelli himself was unsure what he had uncovered at first. The name Sauroposeidon actually stems from the Greek word “saurus” (meaning lizard) and the mythological god Poseidon. The names refers to Poseidon’s nickname as “Earthshaker,” implying that the Sauroposeidon's weight and size was enough to move mountains.

image

Poseidon, god of the sea and maker of earthquakes.

Sauroposeidon seems to be a relative of Brachiosaurus, and like Brachiosaurus, probably held its neck upright like a giraffe, rather than out in front of it like the Apatosaurus. Sauroposeidon would have been much larger than Brachiosaurus, however. Cifelli and former student Matt Wedel believe Sauroposeidon would have been nearly 100 feet long and stood some 60 feet tall. It could have stood flat-footed and looked into a sixth story window. In fact, the Guinness Book of World Records recognizes the Sauroposeidon as the world’s tallest dinosaur.

image

Sauroposeidon Scale

Unlike other items featured in the ITTB series, which are too fragile for public display, the Sauroposeidon can be seen from just inside the Great Hall, peeking out from the Noble Corporation and Noble Energy Orientation Gallery. When it comes to fossils, go big or go home, right? We enjoyed sharing a glimpse into our collections and exhibits with you and hope this series has inspired you to visit and discover for yourself the specimens and artifacts featured in this series.

We look forward to seeing you soon!

Inside the Treasure Box: Week Nine

Some 455 million years ago, long before the wind came sweeping down the plains, Oklahoma was nothing more than a fragment of the ocean floor. A diverse array of marine life inhabited the waters above the future United States and left behind a rich prehistoric past. How do invertebrate paleontolgoists know all of this? Though these early sooners may be long gone, their skeletons remain.

image

Trilobites embedded in limestone

This specimen, from the invertebrate paleontology department, is one of several slabs of limestone crowded with complete skeletons of the trilobite Homotelus. Trilobites are extinct marine arthropods that disappeared roughly 250 million years ago. In case you need a refresher, arthropods are a classification of animals with segmented bodies and external skeletons, like scorpions, crabs and butterflies.

image

The Asian forest scorpion is an example of an arthropod.

The trilobite specimen shown above is important to scientists because it provides a snapshot into the behavior of these arthropods. Complete skeletons of trilobites are rare, as they would normally fall apart quickly after death. It is highly unusual to find hundreds of skeletons clustered together this way, as a result. Invertebrate paleontolgoists believe that the trilobites may have gathered in large numbers to spawn, much like modern horseshoe crabs along the east coast of the United States. 

image

Horseshoe crabs

It’s also important to note that geography played a prominant role in the recovery of this specimen. Geological evidence indicates that the embedded trilobites were buried very quickly by mud, possibly by a storm close to shore that would have stirred up the sea floor and carried mud-laden waters offshore. After the storm waned, this mud was likely dumped on the sea bottom, burying the trilobites. Nearly 455 million years later, scientists discovered their skeletons, still intact, buried in the Ordovician rocks of the Criner Hills in southern Oklahoma.

image

The Criner Hills are in Carter County, Okla.

Thanks to this discovery, invertebrate paleontologists now have a unique glimpse into the life of extinct animals. They also know that the reproductive behavior of trilobites resembles modern marine arthropods. Of course, you don’t have to look 455 millions years into the past to see Oklahoma’s astounding contributions to history. In fact, next week we’ll be looking at a more recent group of Oklahomans. Can you guess who?

Oklahoma Fossils Identified!

I’d like to share a link with you to a new web page created for identifying Oklahoma fossils, www.CommonFossilsOfOklahoma.snomnh.ou.edu.

common-fossils-of-oklahoma



It’s packed with images of living plants and animals and their respective fossils, details about how paleontologists search for fossils, and ways to identifying Oklahoma fossils and learn about the communities these plants and animals came from.

If you’re in need of help identifying an object or fossil, submit a request, it’s easy!

I-found-a-fossil

Feel free to visit the site and learn something new about Oklahoma fossils!